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ABSTRACT We study the orbit of a highest-weight vector in
an integrable highest-weight module of the group G associated to
a Kac-Moody algebra g(A). We obtain applications to the geo-
metric structure of the associated flag varieties and to the alge-
braic structure of g(A). In particular, we prove conjugacy theo-
rems for Cartan and Borel subalgebras of g(A), so that the Cartan
matrix A is an invariant of g(A).

1. We first recall some facts about Kac-Moody algebras (see
refs. 1 and 2 for details).
A symmetrizable generalized Cartan matrix A = (aj)ijEi in-

dexed by a nonempty finite set I is a matrix of integers satisfying
aii = 2 for all i; aij 5 0 if i # j; DA is symmetric for some non-
degenerate diagonal matrix D. We fix such a matrix A, assumed
for simplicity to be indecomposable.

Fix a base field F of characteristic zero. Choose a triple
(fII,[IV), unique up to isomorphism, where b is a vector space
over F of dimension III + corankA and H = {aj}=i- C *flV =
{hjjjj C b are linearly independent indexed sets satisfying aj(hi)
= aij.
The Kac-Moody algebra g = g(A) is the Lie algebra over F

generated by t and symbols ej and f,(i E I) with defining re-
lations: [b,] = 0; [ei,fj] = 8ih,; [h,ei] = a,(h)ei, [h,f,] = (h)f
(h E b); (ad ej)'-" (ej) = 0 = (ad fi)-%(f) (i # j). We have the
canonical embedding ) C g and linearly independent Chevalley
generators ej,fi(i E I) for the derived algebra g' of g. The center
c of g lies in t': = b n g' = I Fhi. Every ideal of g contains

or is contained in C (3).
Define an involution w of g by requiring o(ei) = -fi, o(f])

= -ei, and c(h) = -h(h E b). Let n+ be the subalgebra of g
generated by the ei(i E I), and put b+ = b + n+,n. = 4n+),
b = (b+). We have the vector space decomposition g = n_
E bEDn+.
We have the root space decomposition g = 1 g0, where

ga= {x EE gl[hx] = a(h)x for all h E bl. Put Q = XiEiZai, Q+
= XeiZ+ai (where Z+ = {0, 1,.. . }), and define a partial order
on t* by: A :- if A - ,u E Q+. A root (resp. positive root) is
an element of A: = {a E tb*la # 0, ga # (0)} (resp. A+: = A
n Q+). We have: I = go, n+1 = EaEA+ g.-a

Let Aut(A) be the group of all permutations o of I satisfying
a,,(j), ) = ay. We regard Aut(A) as a subgroup of Aut(g') by
requiring or(ei) = e~,(), o(fJ) = f(). We define the outer au-
tomorphism group Out(A) of g' to be Aut(A) if dim g' <0 and
{1,co} X Aut(A) otherwise.

Define rj E AutuTh), i E I, by ri(h) = h - aj(h)hi, and put S
= {rili E I}. S generates the Weyl group W, and (W,S) is a Cox-
eter system. W preserves the root system A. A real (resp. im-
aginary) root is an element of A"': = W(I) (resp. A'm: = A\Are).
If a E A', then dim ga =1 andA n Za = {a, - a}; if a E AWm,

then Za C A U {0}. Put A" = ,re n A+. For a E Are, write
a = w(ai) for some w E W and i E I; then av: = w(hi) and r0,:
- wriwu' depend only on a.
We choose a nondegenerate g-invariant symmetric F-bilinear

form (.1.) on g such that (hilhi) is positive rational for all i E I.
(.1.) is nondegenerate and W-invariant on b and, hence, induces
a form (.1.)on . One has (ala) >0 if a E Ar. (.1.) induces a
nondegenerate form on g'/c, which is unique up to multiples.

2. We now construct the group G associated to the Lie al-
gebra g'. Other approaches may be found in refs. 4-8.
A g'-module V, or (V, r), where v: g' -+ End4(V), is called

integrable if 7r(e) is locally nilpotent whenever e E ga, a E Are
(a EE ± H1 suffices). (g,ad) is an integrable g'-module.

Let G* be the free product of the additive groups g. (a E
Are), with canonical inclusions iG: g,. -- G*. For any integrable
g'-module (V, 1T), define a homomorphism IT*: G* -- AutF(V) by
7r*(ia(e)) = exp ir(e). Let N* be the intersection of all Ker(ir*),
put G = G*/N*, and let q: G* -+ G be the canonical homo-
morphism. For e E g0(a E Are), put exp e = q(ia(e)), so that U.:
= exp g0 is an additive one-parameter subgroup of G. The Uj(a
E +± H) generate G, and G is its own derived group. Denote by
U+ (resp. U-) the subgroup of G generated by the U, (resp. U_a),
a E Are

Example: Let A be the Cartan matrix of a split simple finite-
dimensional Lie algebra g over F. Then the group G associated
to g g'(A) is the group G(F) of F-valued points of the con-
nected simply-connected algebraic group Qassociated to g, and
U+ =U(F) for some maximal unipotent subgroup Jof G. Now let
A be the extended Cartan matrix of g. Then the group G as-
sociated to g'(A) is a central extension by F* of G(F[z,z'1]), and
U+ {g(z) E G(F[z])Ig(0) E U(F)}. In particular, ifG = SL2, then
U+ is isomorphic to the free product of the abelian groups

(0 F[z]) and °),

so that no proper subset of {Uala EE Ar} generates U+.
To any integrable g'-module (V,ir) we associate the homo-

morphism (again denoted by) r: G -- Aut(V) satisfying ir(exp
e) = exp ir(e) for e E ga(a E Ar'). The homomorphism asso-
ciated to (g,ad), denoted Ad, maps G into Aut(g). The kernel
of Ad is the center C of G, and Ad(G) acts faithfully on g'/c. We
have 1r(Ad(g)x) = ig)r(x) r(g)-' for any integrable g'-module
(V,'r) and all g E G, x E g'. It follows that if (V, 1) is an in-
tegrable g'-module with Ker 7rC C, then (on G) Ker ir C C.

For each i E I we have a unique homomorphism 4i: SL2 (F)
G satisfying:

(( )) exp tei, i ((t 1)) = exp tfi (t E F).

Let Gi = 4b(SL2 (F)), Hi = 4j({diag(t,t ')It E F*}), and let Ni be
the normalizer of Hi in Gi. Let H(resp. N) be the subgroup of
G generated by the Hi (resp. Nj); H is an abelian normal subgroup
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of N. Using the modules L(A) (see section 3), we show that the
4i are monomorphisms and that H is the direct product of the
Hi. Using the fact that W is a Coxeter group, we have an iso-
morphism A: W - N/H such that 0(ri) is the coset NiH\H. We
identify W and N/H using A; this gives sense to expressions such
as wH and wU+w-1occurringin the sequel. We put B+ = HU+,
B_ = HU_.
LEMMA 1. If a,43 E Are and a(f3V) 2 0, then:

(a) (Z+a + 4Z() n A = {aP,a + )} n Are.

(b) (Ua),U) C U,+,o if a + p E Are and = {1} otherwise.

Proof: If y = ma + nf3 E A, where m,n E Z+, then y(#V)
2 np(#v) = 2n, so that by using root strings, ma E A U {O} and,
hence, m < 1. Similarly, n < 1. In particular, 2y CE A, so that
y E Are. This proves part a; part b follows from part a.
COROLLARY 1 (cf. ref. 8). Let a E HI and let Ua = (xyxf'Ix

EE Uly E Up for some (3 EE A'\{a}). Then Ua = U+ n
rU+r' and U+ = UaI C U .

Proof: The inclusion re,,xUpx-ra-1 C Ua for 3 EE Are\{a} and
x E Ua follows from Lemma 1 if a(PV) 2 0; the case a(PV) <
o reduces to the first one.
COROLLARY 2.

(a) (G, B+, N, S) is a Tits system.

(b) G = U B+wB+ (Bruhat decomposition).
wew

(c) G = U BwB+ (Birkhoff decomposition).
wew

Proof: The proofs of parts a and b are standard using Cor-
ollary 1 (cf. ref. 9). For part c one checks that

Bw B+ri C Bw B+ U B wri B+.

The proof of the following lemma is not difficult; it involves
a completion of the enveloping algebra of n+.
LEMMA 2.
(a) Ad is faithful on U+.
( Let w E W. Then to any e E n+ n w(nr) there corre-

sponds a u E U+ such thatfor any integrable g'-module (V,ir),
7r(e) is locally nilpotent and w(u) = exp ir(e).
COROLLARY 3.

(a) U+ n B. = {1}.
(b) C C H.

(c) C Hom(ZI/AZIF*).
For the next corollary, we take F = C. Define a conjugate-

linear involution wo of g' by requiring wO(et) = -fi,,o(f,) = -ei(i
E I), and let K be the fixed-point set of the corresponding in-
volution of G. For i E l, put Ki = Gi n K- SU2, Hi =
40,({diag(t,t-')jt E R, t > 0}), H+ = H1iE, Hi. Using Corollary
2, the argument in ref. 9, section 8, proves Corollary 4.
COROLLARY 4.
(a) K is generated by the Ki(i E= I).
(b) (Iwasawa decomposition) The map 4: K x H+ x U+

G defined by 0(k,h,u) = khu is a bipection.
For X C II, let Wx be the subgroup ofW generated by {rIa

E X}, and put Px = B+WxB+. Px and (Px) are called standard
parabolic subgroups of G (their properties in the framework of
Tits systems can be found in ref. 10). Let UX be the smallest
normal subgroup of U+ containing Up for all ( E A+ \ZX, let Mx
be the subgroup of G generated by H and the Up (,( E ± X),
and let Ux =U+ n Mx.

COROLLARY 5. Let X be a subset of H. Then:
(a) Px = Mx C UX; Mx =Px n (Px);

Ux= n wU~w-.
wEWX

In particular,
n wU+w-1={}.
WEW

(b) Ux = (Ux n (wu+w-1))(ux n (wu-w'))
for every w E W.

(c) For every g E G there exists a unique (u,n,u') E U+ X N
X U+ (resp. U X N X U+) such that uE nU n-1 and g = unu'.
COROLLARY 6. N(resp. H) is the normalizer (resp. central-

izer) of H in G.
Proof: Because G = NULU+ by Corollary 5c, it suffices to

show that the normalizer of H in U_ (resp. U+) is trivial. This
follows from Corollary 1 and the last part of Corollary 5a.

3. Now we turn to representation theory. Put P = {A E
b*jA(h,) E Z(i E I)}, P+(resp. P++) = {A E PIA(hi) > 0 (resp.
> 0), all i E I}.
We fix in sections 3 and 4 a A E P+. Then there exists an ir-

reducible g-module (L(A), irA), unique up to isomorphism, con-
taining a v+ # 0 satisfying: 1TA(n+)v+ = (0); wrA(h)v+ = A(h)v+
(h E t). L(A) is an absolutely irreducible integrable g'-module,
and we have L(A) = 1rA(U(n-))v+, Endg(L(A)) = FIL(A). The
module L(A) is called an integrable module with highest weight
A (see refs. 1 and 2 for details).
We have the weight space decomposition L(A) = EA~b. L(A)A,

where L(A)A = {v EE L(A)lh(v) = A(h)v for all h E j}. Elements
of P(A): = {A E t*IL(A)A # (0)} are called weights of L(A). We
have Fv+ = L(A)A = {v E L(A)In+(v) = (0)}; elements of F*v+
are called highest-weight vectors. We have P(A) C A - Q+, and
dim L(A),,,(A) = dim L(A)A if A E b*, w E W.

Regarded as a g-module under iTA: = IrAow, L(A) is denoted
L*(A), and v+ is denoted v. Let (, ) be the unique g-invariant
F-bilinear form on L(A) X L*(A) satisfying (v+, v-) = 1; it is non-
degenerate.

By using Corollary 3b, it is easy to see that the actions of g'
and G on the direct sum of all integrable modules with fun-
damental highest weights are faithful.

Let X = {a E HIA(aV) = 0}. Then Corollaries 2b and 5a im-
ply Corollary 7.
COROLLARY 7. Px (resp. Mx) is the stabilizer of Fv+ (resp. v+
0v)in G.
Some time ago, B. Kostant proved (cf. ref. 11) that the ideal

of the orbit of a highest-weight vector in a nontrivial irreducible
finite-dimensional representation of a simple Lie group over C
is generated by quadratic polynomials. His result and proof can
be extended to the module L(A) (19). We need only the follow-
ing explicit form of the equations for G(v+).
LEMMA 3. For each a E A U {0}, choose dual bases {xi} of

ga and {y(P)} of g-., Then all vfrom the orbit G(v+) satisfy

(*)(AIA) v 0 v = E x(i)(v) 0 y(i)(v).
aEAU{O}

Proof: v0 v lies in the highest component V L(2A) of L(A)
0 L(A) because v+ 0 v+ does. The equation (*) of Lemma 3
now follows from the fact that the generalized Casimir operator
(see refs. 1 and 2 for a definition) acts as (known) scalars on L(A)
and L(2A).

Let V be the set of all non-zero v E L(A) satisfying Eq. (*).
It is a G-invariant cone. For v E L(A), write v = XA VA, where
vA E L(A)A. Put supp(v) = {A E P(A)lvA $ 0}, and let S(v) be the
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convex hull of supp(v). We now prove a crucial lemma.
LEMMA 4. Ifv E V, then:
(a) The vertices of the polyhedron S(v) lie in the orbit W(A).
(b) The edges of S(v) are parallel to real roots.
The lemma follows from a simple observation: Let g = rER

gr be an R-gradation of the Lie algebra g such that go = A, and
let L(A) = ErER L(A)r be the corresponding gradation of L(A)
with v+ E L(A)o. Then: (i) If v E: vI n L(A)r, then v E L(A)w(A)
for some w E W. (ii) The highest component of any v E v lies
in V.

Indeed, aside from "real" in part b, Lemma 4 is immediate
from the observation. Because the difference of two elements
of W(A) cannot be a non-zero multiple of an imaginary root,
Lemma 4 follows. To prove the observation, note that if Aku E
P(A), then (AlA) - (Ajp) . 0, with equality iff A = IL E W(A)
(2). By examining the L(A)r 0) L(A)r component of Eq. (*), i fol-
lows. Similarly, ii follows by considering the highest component
of Eq. (*) in the R-gradation of L(A) 0 L(A) defined by

L(A)r 0) L(A)s C (L(A) 0 L(A))r+s.
4. Now we turn to the study of the cone V. Put I =

Hom(Q,F*), and define a homomorphism Ad: H --AutF(g) by
Ad(h)x = h(a)x if x E gal Ad induces an action of H on G, de-
fining L X G, to which Ad extends in the obvious way. We ex-
tend the action of G on L(A) to H X G by requiring H to fix v'.

Define the Bruhat order > on the orbit W(A) to be the partial
order generated by: A > A if A . u and A = r,(Ix) for some a
E Are Given A E W(A), we put:

T(A)+ = {v E ojsupp(v) 2 A and A E supp(v)};
T(A)_= {v E |Vsupp(v) C A and A E supp(v)};

V(A)+= U V(u)+;V(A). = U V(/)-;SPA A>A

U(A) = n wUuw-1; U±(A) = U(A) n u+;wEW:w(A)=A

(¢(A) = {a E Arelra(A) > A}l
Note that U+(A) is generated by the Up (X3 E (¢(A)).
THEOREM 1. Let e be + or -. Then:
(a) V is the disoint union of the V(A),, A E W(A).
(b) If A E W(A), then the group F* x U8(A) acts simply-tran-

sitively on "If(A)8. In particular, F* x G acts transitively on A.
(c) Let 91 be a U,-invariant topology on V such thatfor all A

E W(A): (i) {v E VlvA # 0} is 91-open; (ii) v, lies in the 91-closure
of F*fI(v) if v E V and vA $ 0. Then for every A E W(A), the
set V(k(A)6 is the 9-closure of V(A)6.

Proof. Part a is clear by Lemma 4a. Part b is proved as follows,
by "killing off" edges of S(v).

FixA E W(A). If v= IA vA E V and VAk 0, we put ¢'(v)
= {a EE 0(A)I[A,r.(A)I is an edge of S(v)}. (¢(v) = (¢(A) n
Q(A - S(v)). Then we have:

(i) (¢'(v) C (¢(v); v E V(A). if ¢F'(v) = 0.

(ii) If a E ¢'(v), then there exists e E ga such that

a (E (((exp e)v) C 4?(v).
Indeed, i is immediate from Lemma 4. To prove ii, choose
non-zero e' E g,. Because F7rA(e')-A(av)v_ = L(A)rdA), it is easy
to see that there exists t in an algebraic closure of F such that
r,,(A) E supp((exp te')v). Then a E 4F ((exp te')v), by Lemma
4; in particular, A + a (E supp((exp te')v), which implies t
E F. Taking e = te', ii holds. i and ii imply the following.

(iii) If v E v and vA # 0, then there exists u E U+(A) such
that 7rA(u)v E V(A)k.

In particular, taking v E V(A)+ in iii, we obtain:
ITA(u)v E V(A)+ n V(A) = L(A)A\{0} C F* N(v+).

By varying A, this and part a imply:

(iv) v = F* G(v+).
From iv and Corollary 2c we deduce:

(v) V(A)- = F* U-(v+).
v and Corollaries 5a and 7 imply:

(vi) F* X U(A) acts simply transitively on V(A)-.
From vi and Corollary 5b, Theorem lb follows.

Finally, we prove Theorem Ic. First, let E = +. Fix A E
W(A), and let Y(A) be the 91-closure of V(A)+. Y(A) is U+-in-
variant because 91 and T(A)+ are. If v E V(A)+ and A is a
vertex of S(v), then /i > A by Lemma 4. By i in Theorem lc
the same holds if v E Y(A), so that Y(A) C V(A)+ by part a.
To prove the reverse inclusion, it suffices to show that if a
E Ar' and ra(A) > A, then V(rc(A))+ C Y(A). For this, note
that 1rA(exp ga)(L(A)A\{0}) C V(A)+, so that L(A)r(A)\{0} C Y(A)
by ii in Theorem ic. Because Y(A) is U+-invariant, we obtain
T(ra(A))+ C Y(A) from Theorem lb. Similarly, Theorem lc holds
for E = -.

5. Now we apply our results to the structure theory of the
Kac-Moody algebra g.
LEMMA 5.
(a) Let A E P+ and let m be a subalgebra of n+ of finite co-

dimension. Then L(A)m: = {v E L(A)lirA(m)v = (0)} isfinite-di-
mensional.

(b) IfA E P+ +, then b+ is the stabilizer of FvA in L(A).
Proof. Let A E P+. Because Y: = Ui,= Ad(U+)ei spans n+,

there exist y1, ..., y Y such that n+ = m + IFy + ... +
FYr, V: = XA(U(IFyl) ... U(IFyr))v- is finite-dimensional be-
cause the yj are locally nilpotent on L*(A). The linear map
from L(A)m to V* induced by (, ) is injective because L*(A)
- V + fr*(m)L*(A). This proves part a.

Let A E P++. Because 1rA(fi)v+ # 0 for all i E I, it is clear
that V: = {x E n -IrA(x)v+ = 0} is ad(b+)-stable. The ideal
ad(U(n-))V of g is contained in n and, hence, is (0). This
proves part b.

Let p be a Lie algebra and (V, 7r) a 4-module, both over F.
We call 4: (i) ir-ftnite if 1r(U(p))v is finite-dimensional for all
v E V; (ii) 7r-triangular if for any v E V there exist 1T(p)-sta-
ble subspaces Vo C ... C Vn of V with v E Vn and dim Vj =
j, 0 < j ' n; and (iii) fr-diagonalizable (resp. ir-semisimple)
if V is a sum of one-dimensional (resp. finite-dimensional ir-
reducible) p-submodules. We call x E 4 7r-finite, -triangular,
etc., if IFx is.
LEMMA 6. The following are equivalent for a subalgebra'

P of g:
(a) P is ad,-triangular.
(b) p is fTA- and 7rA*-triangularfor all A E P+.
(c) Ad(g)p C b+ n w(b-) for some g E G and w E W.
Proof: Clearly, c implies a. We will show that a implies b

and that b implies c. We assume p to be finite-dimensional
and solvable because both a and b imply this.

Assume a. Because p is finite-dimensional, there exists a
finite-dimensional subspace A of g' such that b+ + [p,b+] =
b+ + A. Put V = ad(U(p))b+. Then V/b+ is finite-dimensional
because p is ad,,-finite and V = b+ + ad(U(p))A. Hence, the
p-stable subalgebra m: = {x E gj(xjV) = (O)} of n+ is of finite
codimension. Let A E P+. Then L(A)m is ITA(p)-stable, and is
finite-dimensional by Lemma 5a. p is rA-finite because p is
adg,-finite and v+ E L(A)m is a cyclic vector for L(A) under

Proc. Natl. Acad. Sci. USA 80 (1983)



Proc. Natl. Acad. Sci. USA 80 (1983) 1781

g'. If x E P, then the eigenvalues of adg,(x) lie in F; because
L(A) is an absolutely irreducible g'-module, it follows that all
eigenvalues of 7TA(X) are congruent modulo F and, hence, by
taking traces lie in F. Because , is solvable and wA-finite, and
the eigenvalues of 7A(X) lie in F for any x E p, P must be ITA-
triangular. Similarly, p is -rr*triangular, proving b.
Now assume b. Take A E P+ + and let V = 7rA(U(p))v+. Then

dim V < 00, and there exists a n-invariant ideal of F[V] that de-
fines the projectivization of V n "V. Because V n 'V $
0 and P is triangular on V, there exists v E V n v such
that Fv is rA(p)-invariant (cf. ref. 12). By Theorem lb, choose
g ECG such that ITA(gl)v E F*v+, so that Ad(g1)p C b+ by Lemma
5b. Similarly, choose g2 E G such that Adfg2)p C L. By Cor-
ollary 2c, write g1g2- = u+nu-, where u+ E U+, u E U. and
n E N, and put g = u-'gj. Then Ad(g)p C b+ n Ad(n) b , prov-
ing c.
COROLLARY 8. Let p be a subalgebra of g. Then p is adg /c-

diagonalizable (resp. -triangular) if and only if there exist
g E G andw E W such that Ad(g)p C b (resp. C b+ n w(f J).
COROLLARY 9. Let 4 be a subalgebra of g'. Then p is adg'/c-

finite (resp. -triangular, -diagonalizable or -semisimple) if and
only if p is ir-finite (resp. -triangular, -diagonalizable or -semi-
simple) for all integrable g'-modules (V, ir). In particular a g'-
module (V, 1T) is integrable if and only if all adg-finite elements
of g' are ir-finite.
COROLLARY 10. Let x E g be adg-finite. Then there exist

unique x, and Xn in g such that: x = x, + Xn; [Xsxn] = 0; xs
(resp. Xn) is ITA- and rAw-semisimple (resp. -locally nilpotent)for
all A E P+. xs (resp. Xn) is ad9-semisimple (resp. -locally nil-
potent), and gx = gxs n gxn. x is adg-triangular if and only
if there exist g E G and w E W such that Ad(g)xs E tJ and
Ad(g)xn E n+ n w(n ). xn E g' is -r-locally nilpotent for all
integrable g'-modules (V, r), and Xn E n+ if x E b+.

By using Lemmas 6 and 2b, these corollaries follow from
two observations: (i) If p is an abelian subspace of b+ n w(L),
then there exist an abelian subspace q of b+ n w(b ) and a
u E u+ n wU wu1 such that Ad(u)p C q n f + q n n+.
(ii) If x is ad(osnf+)/c-diagonalizable and x = x1 + X2, where xl
E a, x2 E n+ n w(nf), and [X1,X2] = 0, then x2 = 0.

6. Nowwe prove the conjugacy theorems. We call a maximal
adp-diagonalizable subalgebra of a Lie algebra p a split Cartan
subalgebra.
THEOREM 2. Let g = g(A) be a Kac-Moody algebra asso-

ciated to a symmetrizable generalized Cartan matrix A.
(a) Every split Cartan subalgebra of g(resp. g',g/c, or g'/c)

is Ad(G)-conjugate to b (resp. t ',f/c, or f '/c).
(b) Ifg1 = g(A1) is a Kac-Moody algebra, with center cl, such

that g'/c, is isomorphic to g'/c, then A = Al up to a bijection
of index sets.

(c) AutF(g'/c) = Out(A) oc Ad(H a G).
Proof: Part a is immediate from Corollary 8. Parts b and c for

g/c follow from part a and the fact that every root basis of A is
W-conjugate to H or -H (see ref. 1). Because ad91/c(g/c) [=
DerF(g'/c) in the nonaffine case] is the linear span, of all diago-
nalizable derivations of g'/c, we obtain parts b and c.
COROLLARY 11. AutF(g'/c) preserves the bilinearform (.1.)

on g'/c.
We call a subalgebra a of a Lie algebra P a completely solvable

subalgebra if it can be included in a full ad(a)-invariant flag of
the space p (i.e., p is the union of ad(a)-invariant subspaces ...
D ai D ai+1 D ... (i E Z) of p such that ni ai = (0), dim ai/ai+1
c 1, and ao = a). We call a maximal completely solvable sub-
algebra of a Lie algebra p a Borel subalgebra.
THEOREM 3. Every completely solvable subalgebra of the

Kac-Moody algebra g is contained in a Borel subalgebra. Every
Borel subalgebra of g is Ad(G)-conjugate to b+ or to L. Every

Cartan subalgebra of b+ is Ad(U+)-conjugate to ti.
Choose h E b such that aj(h) is a positive integer for all i E

I. The eigenspace decomposition for ad h defines a Z-gradation
U(g) = E U(g)j and an associated filtration U(g)(n) = Ej~n U(g)j.
For V C U(g), put Vj = V n u(g)j, v(j) = v n U(g)(p). We call
subspaces A and B of a vector space V commensurable if dim-
(A + B)/(A n B) < m. The proof of Theorem 3 is based on the
following Lemma 7.
LEMMA 7. Let a be a subspace of g such thatfor every x E

g one has: dim([a,x] + a)/a < Ao. Then a is commensurable with
one of: (0), g, b+, bL.

Proof: Because a + [h,a] = a + V for some finite-dimen-
sional subspace V of g, a and ad(U(Fh)) a = a + ad(U(Fh))V are
commensurable. Thus, we may assume a = ad(U(Fh))a, so that
a = E aj. Put T.= {j E8 Zja. $ (0)}, R = {j 8 ZI[x,aj] : a for
some x E t + j:eI (Fei + Ffi)}. Then R is finite by our as-
sumption on a. Suppose that T n Z+ is infinite. Choose a pos-
itive n in T greater than max(R). If m 2 0, then ad(U(g),n)an =
7ktO ad(U(n)-kU(t)U(n+)m+k)an is contained in a by the choice
of n. But ad(U(g))an is a noncentral ideal of g and so equals g'.
Therefore, g(n) C a. Similarly, if T n-Z+ is infinite, then (g(n,))
C a for some n' C Z. Lemma 7 follows.

Proof of Theorem 3: We need three observations: (i) If dim
g = 00 and if V1, V2 are subspaces of g of finite codimension,
then [Vl,v2] n tb (o). (ii) If dim g = 00 and k,m,n C Z, then
there exists f E Z such that {x E g(k)I[xg(e)] C g(mj C c + g(n).
(iii) Let a be a subalgebra of a Lie algebra p such that a is ad1/a-
triangular, and let (V, 1T) be an absolutely irreducible p-mod-
ule, all over F. If a is u-triangular over an algebraic closure of
F, then a is r-triangular.

Let b be a completely solvable subalgebra of g. We now show
that b is Ad(G)-conjugate to a subalgebra of b+ or b. This fol-
lows from Lemma 6 if dim b <0, so we assume dim b = 00 and,
hence, dim g = 0. By using i, dim(g/b) = 0. By Lemma 7, b
is commensurable with b+ or with b-, say for definiteness with
b+. Fix A c P++. By using ii and Lemma 5a, we show that b
is 1rA-triangular over an algebraic closure of F. By iii, b is 7TA-
triangular. As in the proof of Lemma 6, this implies that b C
Ad(g)b+ for some g C G. Because b+ C Ad(g)b+ implies g 8
B+ (by G = U+ NU+) and hence b+ = Ad(g)b+, it follows in par-
ticular that b+ is a Borel subalgebra of g.

Let a be a finite-dimensional adb+-diagonalizable subalgebra
of b+. Because a is adb+- and ad./b+-triangular, a is adg-trian-
gular. Hence Ad(u) a C b+ n w(b-) for some u 8 U+ and w E
W by using Lemma 6. By the observations following Corollary
10, a C Ad(u')t for some u' 8 U+. Theorem 3 follows.

Remarks

(i) All results of this paper not explicitly involving the form
() can be extended to the case of an arbitrary generalized Car-

tan matrix.
(ii) One may consider "formal" completions ofG and L(A) and

extend the results of the paper to this case. It follows from the
"formal" analog of Theorem lb that the orbit of the highest weight
vector exhausts all formal solutions of the KdV-type hierarchies
of Hirota bilinear equations constructed by Date-Jimbo-Kash-
iwara-Miwa. Furthermore, the ideal of equations satisfied by
these solutions is generated by Hirota bilinear equations (cf. ref.
19).

(iii) In a sequel to this paper, we shall define a notion of reg-
ular function on G and prove Peter-Weyl- and Borel-Weil-type
theorems (one special case is treated in ref. 13). Furthermore,
for F = C we define a Hausdorff topology on G in which G is
a connected simply-connected paracompact topological group.
The Iwasawa decomposition is a homeomorphism, and we have
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a covering of G by open charts wUHU+(w E W) (see ref. 19).
By Zariski (resp. metric if F = C) topology on L(A) we mean

the finest topology that induces the Zariski (resp. metric) to-
pology on finite-dimensional subspaces. Put 9;A = PY, CA =
PV(A)+, CA = P1(k), CA = PV((A)+, CA = P0f(A)_, dA =

14(A)I(A E W(A)). We deduce from Theorem 1 that 9A is a dis-
joint union of locally closed subvarieties CA(resp. CA) that are
isomorphic to IFd (resp. have codimension dA), and CA(resp.
CA) is the closure of CA(resp. CA). 91A in the metric topology is
a CW-complex with open cells CA, and the singular homology
of 9A is a free Z-module on generators of degree 2dA. The va-
rieties 9A are calledflag varieties of G; CA and CA (resp. CA and
CA) are calledfinite and coftnite Schubert cells (resp. varieties).
The above decompositions of the flag varieties are called Bruhat
and Birkhoff decompositions. We have a homeomorphism 91A
= G/Px. We owe to ref. 14 the idea of studying flag varieties
by using representation theory. In the affine case, the study of
flag varieties goes back to Birkhoff and Bott (cf. refs. 15-17).
Tits has shown recently that the flag varieties depend up to iso-
morphism only on the set X.

(iv) One can show that the Hermitian form (x y)o = -(xIuo(y))
on g is positive-definite on n+ and n-. Using the argument of
ref. 18, one deduces that every L(A) carries a positive-definite
K-invariant Hermitian form. As one of the applications, one can
define the moment map and prove a generalization of the Schur-

Hom-Kostant-Atiyah convexity theorem. This will be dis-
cussed in a subsequent paper.
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